Friend functions
In principle, private and protected members of a class cannot be accessed from outside the same class in which they are declared. However, this rule does not affect friends.
Friends are functions or classes declared as such.
If we want to declare an external function as friend of a class, thus allowing this function to have access to the private and protected members of this class, we do it by declaring a prototype of this external function within the class, and preceding it with the keyword friend.
كود:
// friend functions
#include <iostream>
using namespace std;
class CRectangle {
int width, height;
public:
void set_values (int, int);
int area () {return (width * height);}
friend CRectangle duplicate (CRectangle);
};
void CRectangle::set_values (int a, int b) {
width = a;
height = b;
}
CRectangle duplicate (CRectangle rectparam)
{
CRectangle rectres;
rectres.width = rectparam.width*2;
rectres.height = rectparam.height*2;
return (rectres);
}
int main () {
CRectangle rect, rectb;
rect.set_values (2,3);
rectb = duplicate (rect);
cout << rectb.area();
return 0;
}
The duplicate function is a friend of CRectangle. From within that function we have been able to access the members width and height of different objects of type CRectangle, which are private members. Notice that neither in the declaration of duplicate() nor in its later use in main() have we considered duplicate a member of class CRectangle. It isn't! It simply has access to its private and protected members without being a member.
The friend functions can serve, for example, to conduct operations between two different classes. Generally, the use of friend functions is out of an object-oriented programming methodology, so whenever possible it is better to use members of the same class to perform operations with them. Such as in the previous example, it would have been shorter to integrate duplicate() within the class CRectangle.
Friend classes
Just as we have the possibility to define a friend function, we can also define a class as friend of another one, granting that first class access to the protected and private members of the second one.
كود:
// friend class
#include <iostream>
using namespace std;
class CSquare;
class CRectangle {
int width, height;
public:
int area ()
{return (width * height);}
void convert (CSquare a);
};
class CSquare {
private:
int side;
public:
void set_side (int a)
{side=a;}
friend class CRectangle;
};
void CRectangle::convert (CSquare a) {
width = a.side;
height = a.side;
}
int main () {
CSquare sqr;
CRectangle rect;
sqr.set_side(4);
rect.convert(sqr);
cout << rect.area();
return 0;
}
In this example, we have declared CRectangle as a friend of CSquare so that CRectangle member functions could have access to the protected and private members of CSquare, more concretely to CSquare::side, which describes the side width of the square.
You may also see something new at the beginning of the program: an empty declaration of class CSquare. This is necessary because within the declaration of CRectangle we refer to CSquare (as a parameter in convert()). The definition of CSquare is included later, so if we did not include a previous empty declaration for CSquare this class would not be visible from within the definition of CRectangle.
Consider that friendships are not corresponded if we do not explicitly specify so. In our example, CRectangle is considered as a friend class by CSquare, but CRectangle does not consider CSquare to be a friend, so CRectangle can access the protected and private members of CSquare but not the reverse way. Of course, we could have declared also CSquare as friend of CRectangle if we wanted to.
Another property of friendships is that they are not transitive: The friend of a friend is not considered to be a friend unless explicitly specified.
Inheritance between classes
A key feature of C++ classes is inheritance. Inheritance allows to create classes which are derived from other classes, so that they automatically include some of its "parent's" members, plus its own. For example, we are going to suppose that we want to declare a series of classes that describe polygons like our CRectangle, or like CTriangle. They have certain common properties, such as both can be described by means of only two sides: height and base.
This could be represented in the world of classes with a class CPolygon from which we would derive the two other ones: CRectangle and CTriangle.
The class CPolygon would contain members that are common for both types of polygon. In our case: width and height. And CRectangle and CTriangle would be its derived classes, with specific features that are different from one type of polygon to the other.
Classes that are derived from others inherit all the accessible members of the base class. That means that if a base class includes a member A and we derive it to another class with another member called B, the derived class will contain both members A and B.
In order to derive a class from another, we use a colon (
in the declaration of the derived class using the following format:
class derived_class_name: public base_class_name
{ /*...*/ };
Where derived_class_name is the name of the derived class and base_class_name is the name of the class on which it is based. The public access specifier may be replaced by any one of the other access specifiers protected and private. This access specifier describes the minimum access level for the members that are inherited from the base class.
كود:
// derived classes
#include <iostream>
using namespace std;
class CPolygon {
protected:
int width, height;
public:
void set_values (int a, int b)
{ width=a; height=b;}
};
class CRectangle: public CPolygon {
public:
int area ()
{ return (width * height); }
};
class CTriangle: public CPolygon {
public:
int area ()
{ return (width * height / 2); }
};
int main () {
CRectangle rect;
CTriangle trgl;
rect.set_values (4,5);
trgl.set_values (4,5);
cout << rect.area() << endl;
cout << trgl.area() << endl;
return 0;
}
The objects of the classes CRectangle and CTriangle each contain members inherited from CPolygon. These are: width, height and set_values().
The protected access specifier is similar to private. Its only difference occurs in fact with inheritance. When a class inherits from another one, the members of the derived class can access the protected members inherited from the base class, but not its private members.
Since we wanted width and height to be accessible from members of the derived classes CRectangle and CTriangle and not only by members of CPolygon, we have used protected access instead of private.
What is inherited from the base class?
In principle, a derived class inherits every member of a base class except:
its constructor and its destructor
its operator=() members
its friends
Although the constructors and destructors of the base class are not inherited themselves, its default constructor (i.e., its constructor with no parameters) and its destructor are always called when a new object of a derived class is created or destroyed.
If the base class has no default constructor or you want that an overloaded constructor is called when a new derived object is created, you can specify it in each constructor definition of the derived class:
derived_constructor_name (parameters) : base_constructor_name (parameters) {...}
For example:
كود:
// constructors and derived classes
#include <iostream>
using namespace std;
class mother {
public:
mother ()
{ cout << "mother: no parameters\n"; }
mother (int a)
{ cout << "mother: int parameter\n"; }
};
class daughter : public mother {
public:
daughter (int a)
{ cout << "daughter: int parameter\n\n"; }
};
class son : public mother {
public:
son (int a) : mother (a)
{ cout << "son: int parameter\n\n"; }
};
int main () {
daughter cynthia (0);
son daniel(0);
return 0;
}
Notice the difference between which mother's constructor is called when a new daughter object is created and which when it is a son object. The difference is because the constructor declaration of daughter and son:
كود:
class CRectangle: public CPolygon, public COutput;
class CTriangle: public CPolygon, public COutput;
كود:
// multiple inheritance
#include <iostream>
using namespace std;
class CPolygon {
protected:
int width, height;
public:
void set_values (int a, int b)
{ width=a; height=b;}
};
class COutput {
public:
void output (int i);
};
void COutput::output (int i) {
cout << i << endl;
}
class CRectangle: public CPolygon, public COutput {
public:
int area ()
{ return (width * height); }
};
class CTriangle: public CPolygon, public COutput {
public:
int area ()
{ return (width * height / 2); }
};
int main () {
CRectangle rect;
CTriangle trgl;
rect.set_values (4,5);
trgl.set_values (4,5);
rect.output (rect.area());
trgl.output (trgl.area());
return 0;
}
مواقع النشر (المفضلة)